Industrial Revolution

The Industrial Revolution was the transition to new manufacturing processes in Great Britain, continental Europe, and the United States, that occurred during the period from around 1760 to about 1820–1840.

This transition included going from hand production methods to machines; new chemical manufacturing and iron production processes; the increasing use of water power and steam power; the development of machine tools; and the rise of the mechanized factory system.

Output greatly increased, and a result was an unprecedented rise in population and in the rate of population growth. The textile industry was the first to use modern production methods, and textiles became the dominant industry in terms of employment, value of output, and capital invested.

On a structural level the industrial revolution asked society the so called social question demanding new ideas of managing large groups of individuals. Growing poverty on one and growing population and materialistic wealth on the other hand caused tensions between very rich and poorest people inside society. These tensions where sometimes violently released and led to philosophic ideas like socialism, communism, anarchism.

The Industrial Revolution began in Great Britain, and many of the technological and architectural innovations were of British origin. By the mid-18th century, Britain was the world’s leading commercial nation, controlling a global trading empire with colonies in North America and the Caribbean. Britain had major military and political hegemony on the Indian subcontinent; particularly with the proto-industrialised Mughal Bengal, through the activities of the East India Company. The development of trade and the rise of business were among the major causes of the Industrial Revolution.

The Industrial Revolution marked a major turning point in history. Comparable only to humanity’s adoption of agriculture with respect to material advancement, the Industrial Revolution influenced in some way almost every aspect of daily life. In particular, average income and population began to exhibit unprecedented sustained growth. Some economists have said the most important effect of the Industrial Revolution was that the standard of living for the general population in the Western world began to increase consistently for the first time in history, although others have said that it did not begin to meaningfully improve until the late 19th and 20th centuries. GDP per capita was broadly stable before the Industrial Revolution and the emergence of the modern capitalist economy, while the Industrial Revolution began an era of per-capita economic growth in capitalist economies. Economic historians are in agreement that the onset of the Industrial Revolution is the most important event in human history since the domestication of animals and plants.

The precise start and end of the Industrial Revolution is still debated among historians, as is the pace of economic and social changes. Eric Hobsbawm held that the Industrial Revolution began in Britain in the 1780s and was not fully felt until the 1830s or 1840s, while T. S. Ashton held that it occurred roughly between 1760 and 1830. Rapid industrialisation first began in Britain, starting with mechanized textiles spinning in the 1780s, with high rates of growth in steam power and iron production occurring after 1800. Mechanized textile production spread from Great Britain to continental Europe and the United States in the early 19th century, with important centres of textiles, iron and coal emerging in Belgium and the United States and later textiles in France.

An economic recession occurred from the late 1830s to the early 1840s when the adoption of the Industrial Revolution’s early innovations, such as mechanized spinning and weaving, slowed and their markets matured. Innovations developed late in the period, such as the increasing adoption of locomotives, steamboats and steamships, and hot blast iron smelting. New technologies such as the electrical telegraph, widely introduced in the 1840s and 1850s, were not powerful enough to drive high rates of growth. Rapid economic growth began to occur after 1870, springing from a new group of innovations in what has been called the Second Industrial Revolution. These innovations included new steel making processes, mass production, assembly lines, electrical grid systems, the large-scale manufacture of machine tools, and the use of increasingly advanced machinery in steam-powered factories.




The earliest recorded use of the term “Industrial Revolution” was in July 1799 by French envoy Louis- Guillaume Otto, announcing that France had entered the race to industrialise. In his 1976 book Keywords: A Vocabulary of Culture and Society, Raymond Williams states in the entry for “Industry”: “The idea of a new social order based on major industrial change was clear in Southey and Owen, between 1811 and 1818, and was implicit as early as Blake in the early 1790s and Wordsworth at the turn of the [19th] century.” The term Industrial Revolution applied to technological change was becoming more common by the late 1830s, as in Jérôme-Adolphe Blanqui’s description in 1837 of la révolution industrielle.

Friedrich Engels in The Condition of the Working Class in England in 1844 spoke of “an industrial revolution, a revolution which at the same time changed the whole of civil society”. Although Engels wrote his book in the 1840s, it was not translated into English until the late 19th century, and his expression did not enter everyday language until then. Credit for popularising the term may be given to Arnold Toynbee, whose 1881 lectures gave a detailed account of the term.

Economic historians and authors such as Mendels, Pomeranz, and Kridte argue that proto-industrialization in parts of Europe, the Muslim world, Mughal India, and China created the social and economic conditions that led to the Industrial Revolution, thus causing the Great Divergence. Elvin, Mark (1973), The Pattern of the Chinese Past (, Stanford University Press, pp. 7, 113–199, ISBN 978-0-8047-0876-0 Some historians, such as John Clapham and Nicholas Crafts, have argued that the economic and social changes occurred gradually and that the term revolution is a misnomer. This is still a subject of debate among some historians.




Six factors facilitated industrialization: high levels of agricultural productivity (see British Agricultural Revolution) to provide excess manpower and food; a pool of managerial and entrepreneurial skills; available ports, rivers, canals, and roads to cheaply move raw materials and outputs; natural resources such as coal, iron, and waterfalls; political stability and a legal system that supported business; and financial capital available to invest. Once industrialization began in Great Britain, new factors can be added: the eagerness of British entrepreneurs to export industrial expertise and the willingness to import the process. Britain met the criteria and industrialized starting in the 18th century, and then it exported the process to western Europe (especially Belgium, France, and the German states) in the early 19th century. The United States copied the British model in the early 19th century, and Japan copied the Western European models in the late 19th century.


Important technological developments


The commencement of the Industrial Revolution is closely linked to a small number of innovations, beginning in the second half of the 18th century. By the 1830s, the following gains had been made in important technologies:


Textiles – mechanised cotton spinning powered by steam or water increased the output of a worker by a factor of around 500. The power loom increased the output of a worker by a factor of over 40. The cotton gin increased productivity of removing seed from cotton by a factor of 50. Large gains in productivity also occurred in spinning and weaving of wool and linen, but they were not as great as in cotton.

Steam power – the efficiency of steam engines increased so that they used between one- fifth and one-tenth as much fuel. The adaptation of stationary steam engines to rotary motion made them suitable for industrial uses. The high-pressure engine had a high power-to- weight ratio, making it suitable for transportation. Steam power underwent a rapid expansion after 1800.

Iron making – the substitution of coke for charcoal greatly lowered the fuel cost of pig iron and wrought iron production. Using coke also allowed larger blast furnaces, resulting in economies of scale. The steam engine began being used to power blast air (indirectly by pumping water to a water wheel) in the 1750s, enabling a large increase in iron production by overcoming the limitation of water power. The cast iron blowing cylinder was first used in 1760. It was later improved by making it double acting, which allowed higher blast furnace temperatures. The puddling process produced a structural grade iron at a lower cost than the finery forge. The rolling mill was fifteen times faster than hammering wrought iron. Developed in 1828, hot blast greatly increased fuel efficiency in iron production in the following decades.

Invention of machine tools – the first machine tools were invented included the screw- cutting lathe, the cylinder boring machine, and the milling machine. Machine tools made the economical manufacture of precision metal parts possible, although it took several decades to develop effective techniques.


Social effects


Factory system


Prior to the Industrial Revolution, most of the workforce was employed in agriculture, either as self- employed farmers as landowners or tenants or as landless agricultural labourers. It was common for families in various parts of the world to spin yarn, weave cloth and make their own clothing. Households also spun and wove for market production. At the beginning of the Industrial Revolution, India, China, and regions of Iraq and elsewhere in Asia and the Middle East produced most of the world’s cotton cloth while Europeans produced wool and linen goods.

In Britain by the 16th century the putting-out system was practised, by which farmers and townspeople produced goods for a market in their homes, often described as cottage industry. Typical putting-out system goods included spinning and weaving. Merchant capitalists typically provided the raw materials, paid workers by the by the piece, and were responsible for the sale of the goods. Embezzlement of supplies by workers and poor quality were common problems. The logistical effort in procuring and distributing raw materials and picking up finished goods were also limitations of the putting-out system.

Some early spinning and weaving machinery, such as a 40 spindle jenny for about six pounds in 1792, was affordable for cottagers. Later machinery such as spinning frames, spinning mules and power looms were expensive (especially if water-powered), giving rise to capitalist ownership of factories.

The majority of textile factory workers during the Industrial Revolution were unmarried women and children, including many orphans. They typically worked for 12 to 14 hours per day with only Sundays off. It was common for women to take factory jobs seasonally during slack periods of farm work. Lack of adequate transportation, long hours, and poor pay made it difficult to recruit and maintain workers. Many workers, such as displaced farmers and agricultural workers, who had nothing but their labour to sell, became factory workers out of necessity.

The change in the social relationship of the factory worker compared to farmers and cottagers was viewed unfavourably by Karl Marx; however, he recognized the increase in productivity made possible by technology.


Standards of living


Some economists, such as Robert Lucas Jr., say that the real effect of the Industrial Revolution was that “for the first time in history, the living standards of the masses of ordinary people have begun to undergo sustained growth … Nothing remotely like this economic behaviour is mentioned by the classical economists, even as a theoretical possibility.” Others argue that while the growth of the economy’s overall productive powers was unprecedented during the Industrial Revolution, living standards for the majority of the population did not grow meaningfully until the late 19th and 20th centuries and that in many ways workers’ living standards declined under early capitalism: for instance, studies have shown that real wages in Britain only increased 15% between the 1780s and 1850s and that life expectancy in Britain did not begin to dramatically increase until the 1870s. Similarly, the average height of the population declined during the Industrial Revolution, implying that their nutritional status was also decreasing. Real wages were not keeping up with the price of food.

During the Industrial Revolution, the life expectancy of children increased dramatically. The percentage of the children born in London who died before the age of five decreased from 74.5% in 1730–1749 to 31.8% in 1810–1829. The effects on living conditions have been controversial and were hotly debated by economic and social historians from the 1950s to the 1980s. A series of 1950s essays by Henry Phelps Brown and Sheila V. Hopkins later set the academic consensus that the bulk of the population, that was at the bottom of the social ladder, suffered severe reductions in their living standards. During 1813–1913, there was a significant increase in worker wages.


Industrialisation beyond Great Britain

Continental Europe


The Industrial Revolution in continental Europe came later than in Great Britain. It started in Belgium and France, then spread to the German states by the middle of the 19th century. In many industries, this involved the application of technology developed in Britain in new places. Typically the technology was purchased from Britain or British engineers and entrepreneurs moved abroad in search of new opportunities. By 1809, part of the Ruhr Valley in Westphalia was called ‘Miniature England’ because of its similarities to the industrial areas of Britain. Most European governments provided state funding to the new industries. In some cases (such as iron), the different availability of resources locally meant that only some aspects of the British technology were adopted.


Second Industrial Revolution


Steel is often cited as the first of several new areas for industrial mass-production, which are said to characterise a “Second Industrial Revolution”, beginning around 1850, although a method for mass manufacture of steel was not invented until the 1860s, when Sir Henry Bessemer invented a new furnace which could convert molten pig iron into steel in large quantities. However, it only became widely available in the 1870s after the process was modified to produce more uniform quality. Bessemer steel was being displaced by the open hearth furnace near the end of the 19th century.

This Second Industria Revolution gradually grew to include chemicals, mainly the chemical industries, petroleum (refining and distribution), and, in the 20th century, the automotive industry, and was marked by a transition of technological leadership from Britain to the United States and Germany.

The increasing availability of economical petroleum products also reduced the importance of coal and further widened the potential for industrialisation.

A new revolution began with electricity and electrification in the electrical industries. The introduction of hydroelectric power generation in the Alps enabled the rapid industrialisation of coal- deprived northern Italy, beginning in the 1890s.

By the 1890s, industrialisation in these areas had created the first giant industrial corporations with burgeoning global interests, as companies like U.S. Steel, General Electric, Standard Oil and Bayer AG joined the railroad and ship companies on the world’s stock markets.


New Industrialism


The New Industrialist movement advocates for increasing domestic manufacturing while reducing emphasis on a financial-based economy that relies on real estate and trading speculative assets. New Industrialism has been described as “supply-side progressivism” or embracing the idea of “Building More Stuff”. New Industrialism developed after the China Shock that resulted in lost manufacturing jobs in the U.S. after China joined the World Trade Organization in 2001. The movement strengthened after the reduction of manufacturing jobs during the Great Recession and when the U.S. was not able to manufacture enough tests or facemasks during the COVID-19 pandemic. New Industrialism calls for building enough housing to satisfy demand in order to reduce the profit in land speculation, to invest in infrastructure, and to develop advanced technology to manufacture green energy for the world. New Industrialists believe that the United States is not building enough productive capital and should invest more into economic growth.


Natural resources of India

Resources are classified as either biotic or abiotic on the basis of their origin. The Indian landmass contains a multitude of both types of resource and its economy.

Effects of climate change

The effects of climate change impact the physical environment, ecosystems and human societies.

Economic liberalisation in India

Refers to the series of policy changes aimed at opening up the country's economy to the world, with the objective of making it more market-oriented and service-driven.