Economic growth

Economic growth can be defined as the increase or improvement in the inflation-adjusted market value of the goods and services produced by an economy in a financial year.

Statisticians conventionally measure such growth as the percent rate of increase in the real gross domestic product, or real GDP.

Growth is usually calculated in real terms – i.e., inflation-adjusted terms – to eliminate the distorting effect of inflation on the prices of goods produced. Measurement of economic growth uses national income accounting. Since economic growth is measured as the annual percent change of gross domestic product (GDP), it has all the advantages and drawbacks of that measure. The economic growth- rates of countries are commonly compared using the ratio of the GDP to population (per-capita income).

The “rate of economic growth” refers to the geometric annual rate of growth in GDP between the first and the last year over a period of time. This growth rate represents the trend in the average level of GDP over the period, and ignores any fluctuations in the GDP around this trend.

Economists refer to economic growth caused by more efficient use of inputs (increased productivity of labor, of physical capital, of energy or of materials) as intensive growth. In contrast, GDP growth caused only by increases in the amount of inputs available for use (increased population, for example, or new territory) counts as extensive growth.

Development of new goods and services also generates economic growth. As it so happens, in the U.S. about 60% of consumer spending in 2013 went on goods and services that did not exist in 1869.




The economic growth rate is calculated from data on GDP estimated by countries’ statistical agencies. The rate of growth of GDP per capita is calculated from data on GDP and people for the initial and final periods included in the analysis of the analyst.


Long-term growth


Living standards vary widely from country to country, and furthermore, the change in living standards over time varies widely from country to country. Below is a table which shows GDP per person and annualized per person GDP growth for a selection of countries over a period of about 100 years. The GDP per person data are adjusted for inflation, hence they are “real”. GDP per person (more commonly called “per capita” GDP) is the GDP of the entire country divided by the number of people in the country; GDP per person is conceptually analogous to “average income”.

Seemingly small differences in yearly GDP growth lead to large changes in GDP when compounded over time. For instance, in the above table, GDP per person in the United Kingdom in the year 1870 was $4,808. At the same time in the United States, GDP per person was $4,007, lower than the UK by about 20%. However, in 2008 the positions were reversed: GDP per person was $36,130 in the United Kingdom and $46,970 in the United States, i.e. GDP per person in the US was 30% more than it was in the UK. As the above table shows, this means that GDP per person grew, on average, by 1.80% per year in the US and by 1.47% in the UK. Thus, a difference in GDP growth by only a few tenths of a percent per year results in large differences in outcomes when the growth is persistent over a generation. This and other observations have led some economists to view GDP growth as the most important part of the field of macroeconomics:

…if we can learn about government policy options that have even small effects on long-term growth rates, we can contribute much more to improvements in standards of living than has been provided by the entire history of macroeconomic analysis of countercyclical policy and fine-tuning. Economic growth [is] the part of macroeconomics that really matters.


Growth and innovation


It has been observed that GDP growth is influenced by the size of the economy. The relation between GDP growth and GDP across the countries at a particular point of time is convex. Growth increases as GDP reaches its maximum and then begins to decline. There exists some extremum value. This is not exactly middle- income trap. It is observed for both developed and developing economies. Actually, countries having this property belong to conventional growth domain. However, the extremum could be extended by technological and policy innovations and some countries move into innovative growth domain with higher limiting values.


Determinants of per capita GDP growth


In national income accounting, per capita output can be calculated using the following factors: output per unit of labor input (labor productivity), hours worked (intensity), the percentage of the working-age population actually working (participation rate) and the proportion of the working-age population to the total population (demographics). “The rate of change of GDP/population is the sum of the rates of change of these four variables plus their cross products.”

Economists distinguish between long-run economic growth and short-run economic changes in production. Short-run variation in economic growth is termed the business cycle. Generally, economists attribute the ups and downs in the business cycle to fluctuations in aggregate demand. In contrast, economic growth is concerned with the long-run trend in production due to structural causes such as technological growth and factor accumulation.




Increases in labor productivity (the ratio of the value of output to labor input) have historically been the most important source of real per capita economic growth.  In a famous estimate, MIT Professor Robert Solow concluded that technological progress has accounted for 80 percent of the long- term rise in U.S. per capita income, with increased investment in capital explaining only the remaining 20 percent.

Increases in productivity lower the real cost of goods. Over the 20th century, the real price of many goods fell by over 90%.

Economic growth has traditionally been attributed to the accumulation of human and physical capital and the increase in productivity and creation of new goods arising from technological innovation. Further division of labour (specialization) is also fundamental to rising productivity.

Before industrialization technological progress resulted in an increase in the population, which was kept in check by food supply and other resources, which acted to limit per capita income, a condition known as the Malthusian trap. The rapid economic growth that occurred during the Industrial Revolution was remarkable because it was in excess of population growth, providing an escape from the Malthusian trap. Countries that industrialized eventually saw their population growth slow down, a phenomenon known as the demographic transition.

Increases in productivity are the major factor responsible for per capita economic growth—this has been especially evident since the mid-19th century. Most of the economic growth in the 20th century was due to increased output per unit of labor, materials, energy, and land (less input per widget). The balance of the growth in output has come from using more inputs. Both of these changes increase output. The increased output included more of the same goods produced previously and new goods and services.

During the Industrial Revolution, mechanization began to replace hand methods in manufacturing, and new processes streamlined production of chemicals, iron, steel, and other products. Machine tools made the economical production of metal parts possible, so that parts could be interchangeable.

During the Second Industrial Revolution, a major factor of productivity growth was the substitution of inanimate power for human and animal labor. Also there was a great increase in power as steam-powered electricity generation and internal combustion supplanted limited wind and water power. Since that replacement, the great expansion of total power was driven by continuous improvements in energy conversion efficiency. Other major historical sources of productivity were automation, transportation infrastructures (canals, railroads, and highways), new materials (steel) and power, which includes steam and internal combustion engines and electricity. Other productivity improvements included mechanized agriculture and scientific agriculture including chemical fertilizers and livestock and poultry management, and the Green Revolution. Interchangeable parts made with machine tools powered by electric motors evolved into mass production, which is universally used today.

Great sources of productivity improvement in the late 19th century were railroads, steam ships, horse-pulled reapers and combine harvesters, and steam-powered factories. The invention of processes for making cheap steel were important for many forms of mechanization and transportation. By the late 19th century both prices and weekly work hours fell because less labor, materials, and energy were required to produce and transport goods. However, real wages rose, allowing workers to improve their diet, buy consumer goods and afford better housing.

Mass production of the 1920s created overproduction, which was arguably one of several causes of the Great Depression of the 1930s. Following the Great Depression, economic growth resumed, aided in part by increased demand for existing goods and services, such as automobiles, telephones, radios, electricity and household appliances. New goods and services included television, air conditioning and commercial aviation (after 1950), creating enough new demand to stabilize the work week. The building of highway infrastructures also contributed to post-World War II growth, as did capital investments in manufacturing and chemical industries. The post-World War II economy also benefited from the discovery of vast amounts of oil around the world, particularly in the Middle East. By John W. Kendrick’s estimate, three-quarters of increase in U.S. per capita GDP from 1889 to 1957 was due to increased productivity.

Economic growth in the United States slowed down after 1973. In contrast, growth in Asia has been strong since then, starting with Japan and spreading to Four Asian Tigers, China, Southeast Asia, the Indian subcontinent and Asia Pacific. In 1957 South Korea had a lower per capita GDP than Ghana,  and by 2008 it was 17 times as high as Ghana’s. The Japanese economic growth has slackened considerably since the late 1980s.

Productivity in the United States grew at an increasing rate throughout the 19th century and was most rapid in the early to middle decades of the 20th century. U.S. productivity growth spiked towards the end of the century in 1996–2004, due to an acceleration in the rate of technological innovation known as Moore’s law. After 2004 U.S. productivity growth returned to the low levels of 1972–96.


Factor accumulation


Capital in economics ordinarily refers to physical capital, which consists of structures (largest component of physical capital) and equipment used in business (machinery, factory equipment, computers and office equipment, construction equipment, business vehicles, medical equipment, etc.). Up to a point increases in the amount of capital per worker are an important cause of economic output growth. Capital is subject to diminishing returns because of the amount that can be effectively invested and because of the growing burden of depreciation. In the development of economic theory, the distribution of income was considered to be between labor and the owners of land and capital. In recent decades there have been several Asian countries with high rates of economic growth driven by capital investment.

The work week declined considerably over the 19th century. By the 1920s the average work week in the U.S. was 49 hours, but the work week was reduced to 40 hours (after which overtime premium was applied) as part of the National Industrial Recovery Act of 1933.

Demographic factors may influence growth by changing the employment to population ratio and the labor force participation rate. Industrialization creates a demographic transition in which birth rates decline and the average age of the population increases.

Women with fewer children and better access to market employment tend to join the labor force in higher percentages. There is a reduced demand for child labor and children spend more years in school. The increase in the percentage of women in the labor force in the U.S. contributed to economic growth, as did the entrance of the baby boomers into the workforce.


Other factors affecting growth


Human capital


Many theoretical and empirical analyses of economic growth attribute a major role to a country’s level of human capital, defined as the skills of the population or the work force. Human capital has been included in both neoclassical and endogenous growth models.

A country’s level of human capital is difficult to measure since it is created at home, at school, and on the job. Economists have attempted to measure human capital using numerous proxies, including the population’s level of literacy, its level of numeracy, its level of book production/capita, its average level of formal schooling, its average test score on international tests, and its cumulative depreciated investment in formal schooling. The most commonly-used measure of human capital is the level (average years) of school attainment in a country, building upon the data development of Robert Barro and Jong-Wha Lee. This measure is widely used because Barro and Lee provide data for numerous countries in five-year intervals for a long period of time.

One problem with the schooling attainment measure is that the amount of human capital acquired in a year of schooling is not the same at all levels of schooling and is not the same in all countries. This measure also presumes that human capital is only developed in formal schooling, contrary to the extensive evidence that families, neighborhoods, peers, and health also contribute to the development of human capital. Despite these potential limitations, Theodore Breton has shown that this measure can represent human capital in log-linear growth models because across countries GDP/adult has a log-linear relationship to average years of schooling, which is consistent with the log-linear relationship between workers’ personal incomes and years of schooling in the Mincer model.

Eric Hanushek and Dennis Kimko introduced measures of students’ mathematics and science skills from international assessments into growth analysis. They found that this measure of human capital was very significantly related to economic growth. Eric Hanushek and Ludger Wößmann have extended this analysis. Theodore Breton shows that the correlation between economic growth and students’ average test scores in Hanushek and Wößmann’s analyses is actually due to the relationship in countries with less than eight years of schooling. He shows that economic growth is not correlated with average scores in more educated countries. Hanushek and Wößmann further investigate whether the relationship of knowledge capital to economic growth is causal. They show that the level of students’ cognitive skills can explain the slow growth in Latin America and the rapid growth in East Asia.

Joerg Baten and Jan Luiten van Zanden employ book production per capita as a proxy for sophisticated literacy capabilities and find that “Countries with high levels of human capital formation in the 18th century initiated or participated in the industrialization process of the 19th century, whereas countries with low levels of human capital formation were unable to do so, among them many of today’s Less Developed Countries such as India, Indonesia, and China.”




Here, health is approached as a functioning from Amartya Sen and Martha Nussbaum’s Capability Approach that an individual has to realise the achievements like economic success. Thus health in a broader sense is not the absence of illness, but the opportunity for people to biologically develop to their full potential their entire lives  It is established that human capital is an important asset for economic growth, however, it can only be so if that population is healthy and well-nourished. One of the most important aspects of health is the mortality rate and how the rise or decline can affect the labour supply predominant in a developing economy. Mortality decline triggers greater investments in individual human capital and an increase in economic growth. Matteo Cervellati and Uwe Sunde and Rodrigo.R Soares consider frameworks in which mortality decline has an influence on parents to have fewer children and to provide quality education for those children, as a result instituting an economic-demographic transition.

The relationship between health and economic growth is further nuanced by distinguishing the influence of specific diseases on GDP per capita from that of aggregate measures of health, such as life expectancy Thus, investing in health is warranted both from the growth and equity perspectives, given the important role played by health in the economy. Protecting health assets from the impact of systemic transitional costs on economic reforms, pandemics, economic crises and natural disasters is also crucial. Protection from the shocks produced by illness and death, are usually taken care of within a country’s social insurance system. In areas such as Sub-Saharan Africa, where the prevalence of HIV and AIDS, has a comparative negative impact on economical development. It will be interesting to see how research in the areas of health in near future uncover how the world will be performing living with the SARS-CoV-2, especially looking at the economic impacts it already has in a space of two years. Ultimately, when people live longer on average, human capital expenditures are more likely to pay off, and all of these mechanisms center around the complementarity of longevity, health, and education, for which there is ample empirical evidence.


Political institutions


“As institutions influence behavior and incentives in real life, they forge the success or failure of nations.”

In economics and economic history, the transition to capitalism from earlier economic systems was enabled by the adoption of government policies that facilitated commerce and gave individuals more personal and economic freedom. These included new laws favorable to the establishment of business, including contract law and laws providing for the protection of private property, and the abolishment of anti-usury laws.

Much of this literature was built on the success story of the British state after the Glorious Revolution of 1688, in which high fiscal capacity combined with constraints on the power of the king generated some respect for the rule of law. However, others have questioned that this institutional formula is not so easily replicable elsewhere as a change in the Constitution—and the type of institutions created by that change—does not necessarily create a change in political power if the economic powers of that society are not aligned with the new set of rule of law institutions. In England, a dramatic increase in the state’s fiscal capacity followed the creation of constraints on the crown, but elsewhere in Europe increases in state capacity happened before major rule of law reforms.

There are many different ways through which states achieved state (fiscal) capacity and this different capacity accelerated or hindered their economic development. Thanks to the underlying homogeneity of its land and people, England was able to achieve a unified legal and fiscal system since the Middle Ages that enabled it to substantially increase the taxes it raised after 1689. On the other hand, the French experience of state building faced much stronger resistance from local feudal powers keeping it legally and fiscally fragmented until the French Revolution despite significant increases in state capacity during the seventeenth century. Furthermore, Prussia and the Habsburg empire—much more heterogeneous states than England—were able to increase state capacity during the eighteenth century without constraining the powers of the executive. Nevertheless, it is unlikely that a country will generate institutions that respect property rights and the rule of law without having had first intermediate fiscal and political institutions that create incentives for elites to support them. Many of these intermediate level institutions relied on informal private-order arrangements that combined with public-order institutions associated with states, to lay the foundations of modern rule of law states.

In many poor and developing countries much land and housing are held outside the formal or legal property ownership registration system. In many urban areas the poor “invade” private or government land to build their houses, so they do not hold title to these properties. Much unregistered property is held in informal form through various property associations and other arrangements. Reasons for extra-legal ownership include excessive bureaucratic red tape in buying property and building. In some countries, it can take over 200 steps and up to 14 years to build on government land. Other causes of extra-legal property are failures to notarize transaction documents or having documents notarized but failing to have them recorded with the official agency.

Not having clear legal title to property limits its potential to be used as collateral to secure loans, depriving many poor countries of one of their most important potential sources of capital. Unregistered businesses and lack of accepted accounting methods are other factors that limit potential capital.

Businesses and individuals participating in unreported business activity and owners of unregistered property face costs such as bribes and pay-offs that offset much of any taxes avoided.

“Democracy Does Cause Growth”, according to Acemoglu et al. Specifically, “democracy increases future GDP by encouraging investment, increasing schooling, inducing economic reforms, improving public goods provision, and reducing social unrest.” UNESCO and the United Nations also consider that cultural property protection, high-quality education, cultural diversity and social cohesion in armed conflicts are particularly necessary for qualitative growth.

According to Daron Acemoglu, Simon Johnson and James Robinson, the positive correlation between high income and cold climate is a by-product of history. Europeans adopted very different colonization policies in different colonies, with different associated institutions. In places where these colonizers faced high mortality rates (e.g., due to the presence of tropical diseases), they could not settle permanently, and they were thus more likely to establish extractive institutions, which persisted after independence; in places where they could settle permanently (e.g. those with temperate climates), they established institutions with this objective in mind and modeled them after those in their European homelands. In these ‘neo-Europes’ better institutions in turn produced better development outcomes. Thus, although other economists focus on the identity or type of legal system of the colonizers to explain institutions, these authors look at the environmental conditions in the colonies to explain institutions. For instance, former colonies have inherited corrupt governments and geopolitical boundaries (set by the colonizers) that are not properly placed regarding the geographical locations of different ethnic groups, creating internal disputes and conflicts that hinder development. In another example, societies that emerged in colonies without solid native populations established better property rights and incentives for long-term investment than those where native populations were large.

In Why Nations Fail, Acemoglu and Robinson said that the English in North America started by trying to repeat the success of the Spanish Conquistadors in extracting wealth (especially gold and silver) from the countries they had conquered. This system repeatedly failed for the English . Their successes rested on giving land and a voice in the government to every male settler to incentivize productive labor. In Virginia it took twelve years and many deaths from starvation before the governor decided to try democracy.


Entrepreneurs and new products


Policymakers and scholars frequently emphasize the importance of entrepreneurship for economic growth. However, surprisingly few research empirically examine and quantify entrepreneurship’s impact on growth. This is due to endogeneity—forces that drive economic growth also drive entrepreneurship. In other words, the empirical analysis of the impact of entrepreneurship on growth is difficult because of the joint determination of entrepreneurship and economic growth. A few papers use quasi-experimental designs, and have found that entrepreneurship and the density of small businesses indeed have a causal impact on regional growth.

Another major cause of economic growth is the introduction of new products and services and the improvement of existing products. New products create demand, which is necessary to offset the decline in employment that occurs through labor-saving technology (and to a lesser extent employment declines due to savings in energy and materials). In the U.S. by 2013 about 60% of consumer spending was for goods and services that did not exist in 1869. Also, the creation of new services has been more important than invention of new goods.


Structural change


Economic growth in the U.S. and other developed countries went through phases that affected growth through changes in the labor force participation rate and the relative sizes of economic sectors. The transition from an agricultural economy to manufacturing increased the size of the sector with high output per hour (the high-productivity manufacturing sector), while reducing the size of the sector with lower output per hour (the lower productivity agricultural sector). Eventually high productivity growth in manufacturing reduced the sector size, as prices fell and employment shrank relative to other sectors. The service and government sectors, where output per hour and productivity growth is low, saw increases in their shares of the economy and employment during the 1990s. The public sector has since contracted, while the service economy expanded in the 2000s.

The structural change could also be viewed from another angle. It is possible to divide real economic growth into two components: an indicator of extensive economic growth—the ‘quantitative’ GDP—and an indicator of the improvement of the quality of goods and services—the ‘qualitative’ GDP.


Natural resources of India

Resources are classified as either biotic or abiotic on the basis of their origin. The Indian landmass contains a multitude of both types of resource and its economy.

Effects of climate change

The effects of climate change impact the physical environment, ecosystems and human societies.

Economic liberalisation in India

Refers to the series of policy changes aimed at opening up the country's economy to the world, with the objective of making it more market-oriented and service-driven.